The expression of whirlin and Cav1.3α1 is mutually independent in photoreceptors

نویسندگان

  • Junhuang Zou
  • Amy Lee
  • Jun Yang
چکیده

Whirlin is a gene responsible for Usher syndrome type II (USH2) and congenital deafness. In photoreceptors, it organizes a protein complex through binding to proteins encoded by other USH2 genes, usherin (USH2A) and G-protein-coupled receptor 98 (GPR98). Recently, Ca(v)1.3α(1) (α(1D)) has been discovered to interact with whirlin in vitro and these two proteins are localized to the same subcellular compartments in photoreceptors. Accordingly, it is proposed that Ca(v)1.3α(1) is in the USH2 protein complex and that the USH2 protein complex is involved in regulating Ca(2+) in photoreceptors. To test this hypothesis, we investigated the interdependence of Ca(v)1.3α(1) and whirlin expression in photoreceptors. We found that lack of Ca(v)1.3α(1) did not change the whirlin distribution or expression level in photoreceptors. In the retina, several Ca(v)1.3α(1) splice variants were found at the RNA level. Among them, the whirlin-interacting Ca(v)1.3α(1) long variant had no change in its protein expression level in the absence of whirlin. The localization of Ca(v)1.3α(1) in photoreceptors, published previously, cannot be confirmed. Therefore, the mutual independence of whirlin and Ca(v)1.3α(1) expressions in photoreceptors suggests that Ca(v)1.3α(1) may not be a key member of the USH2 protein complex at the periciliary membrane complex.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Whirlin replacement restores the formation of the USH2 protein complex in whirlin knockout photoreceptors.

PURPOSE Whirlin is the causative gene for Usher syndrome type IID (USH2D), a condition manifested as both retinitis pigmentosa and congenital deafness. Mutations in this gene cause disruption of the USH2 protein complex composed of USH2A and VLGR1 at the periciliary membrane complex (PMC) in photoreceptors. In this study, the adeno-associated virus (AAV)-mediated whirlin replacement was evaluat...

متن کامل

Association of whirlin with Cav1.3 (alpha1D) channels in photoreceptors, defining a novel member of the usher protein network.

PURPOSE Usher syndrome is the most common form of hereditary deaf-blindness. It is both clinically and genetically heterogeneous. The USH2D protein whirlin interacts via its PDZ domains with other Usher-associated proteins containing a C-terminal type I PDZ-binding motif. These proteins co-localize with whirlin at the region of the connecting cilium and at the synapse of photoreceptor cells. Th...

متن کامل

Whirlin associates with the Cav1.3 (1D) channels in photoreceptors, defining a novel member of the Usher protein network

250 words: 240 Text words: 4323 Page 1 of 23 IOVS IOVS Papers in Press. Published on December 3, 2009 as Manuscript iovs.09-4650 Copyright 2009 by The Association for Research in Vision and Ophthalmology, Inc. 2 PURPOSE. Usher syndrome is the most common form of hereditary deaf-blindness. It is both clinically and genetically heterogeneous. The USH2D protein whirlin interacts via its PDZ domain...

متن کامل

Whirlin interacts with espin and modulates its actin-regulatory function: an insight into the mechanism of Usher syndrome type II.

Whirlin mutations cause retinal degeneration and hearing loss in Usher syndrome type II (USH2) and non-syndromic deafness, DFNB31. Its protein recruits other USH2 causative proteins to form a complex at the periciliary membrane complex in photoreceptors and the ankle link of the stereocilia in hair cells. However, the biological function of this USH2 protein complex is largely unknown. Using a ...

متن کامل

Distinct expression and function of whirlin isoforms in the inner ear and retina: an insight into pathogenesis of USH2D and DFNB31.

Usher syndrome (USH) is the most common inherited deaf-blindness with the majority of USH causative genes also involved in nonsyndromic recessive deafness (DFNB). The mechanism underlying this disease variation of USH genes is unclear. Here, we addressed this issue by investigating the DFNB31 gene, whose mutations cause USH2D or DFNB31 depending on their position. We found that the mouse DFNB31...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Vision Research

دوره 75  شماره 

صفحات  -

تاریخ انتشار 2012